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ABSTRACT

Networked groups of sensors that detect Chemical, Biological, and Radiological (CBR) threats are being developed to
defend cities and military bases.  Due to the high cost and maintenance of these sensors, the number of sensors deployed
is limited.  It is vital for the sensors to be deployed in optimal locations for these sensors to be effectively used to
analyze the scope of the threat. A genetic algorithm, along with the instantaneous plume prediction capabilities of CT-
Analyst has been developed to meet these goals.  CT-Analyst’s time dependant plumes, upwind danger zone, and sensor
capabilities are used to determine the fitness of sensor networks generated by the genetic algorithm.  The optimization
and the requirements for the evaluation of sensor networks in an urban region are examined along with the number of
sensors required to detect these plumes.

INTRODUCTION

With the development of networked chemical sensors, and their possible deployment in cities and bases, it is vital to
deploy them in optimal locations to provide the most beneficial effect.  The characteristics of a sensor network, and the
placement of sensors within the network, need to be evaluated for performance for a given situation.  A sensor network
should be capable of minimizing the detection delay of a source release.  This maximizes the response time that people
within the area effected have, allowing them to take the appropriate measures to limit their exposure to the release.

The costs and logistics of running, building, and maintaining a sensor network makes it difficult to provide zero
detection delay if point detectors are used exclusively.  While some delay may be tolerated, it is our goal to minimize
this delay within other constraints of the situation.  This paper talks about a method using a genetic algorithm to optimize
the location and number of sensors required for a given region.  CT-Analyst's unique capabilities are exploited in this
optimization technique.

 BACKGROUND

Genetic Algorithms

To find an optimal sensor network, a genetic algorithm using CT-Analyst's features is an attractive potential solution.
Since its development by Holland in the 1960's [1], the genetic algorithm has been used successfully in many different
fields.  Genetic algorithms are a type of search algorithm that works particularly well if the search space is too large to
run every potential case and when local maxima exist.  For example, to exhaustively search every possible location of a
group of 20 sensors in a grid of 350x350 potential locations at a rate of 20 evaluations per second would take months if
not years. While the answer generated by a genetic algorithm might not be the best solution, it will typically be a very
close approximation to it.  The main disadvantage of genetic algorithms is that they potentially require a lot of time and
computing resources, depending on the rate of convergence and the computational cost of a fitness function.  However,
given the amount of time required to evaluate a typical population, many examples of parallelized genetic algorithms
exist.

A genetic algorithm evaluates the fitness of genomes in a population, and generates the next population based
on the fitness of the previous generation.  Each genome is a potential solution to the problem, where the elements of the
solution are equivalent to chromosomes in the genome.  The initial population is usually chosen randomly, but the initial
population can also be seeded with solutions that are known to produce good results.  The next population of genomes is
determined by combining members of the current population to produce offspring that are based on the scores of each
parent genome's fitness function.  This is known as crossover.  During crossover, individual chromosomes within the
offspring can potentially mutate, giving the offspring slightly different characteristics that are unique from its parents.
This is particularly useful in later generations of the population, where the population is fairly homogeneous.  The user



determines the fitness function of a genome, in which the performance of a genome is evaluated, and a fitness score is
assigned.  Members with a high fitness score will typically have many offspring in the next generation while those with a
low fitness score could have few or none.  New populations are generated, and evaluated until one of several
requirements is met.  This includes the desired fitness level of a member of the population, the average fitness of the
population has reached some level, or the maximum number of generations has been calculated.

An approach using genetic algorithms was selected for sensor optimization because the characteristics making
up a robust sensor network were largely unknown. This approach also made it easy to modify the characteristics we were
looking for while leaving the search method intact.  We also believe that the results from this approach can be used to
generate a more efficient approach to this problem.  Furthermore, advances in contaminant transport modeling made it
possible for this search technique to be utilized.

Contaminant Transport Modeling

FAST3D-CT, a detailed physics-based numerical model [2], was developed at the Naval Research Laboratory to
accurately predict plume evolution and the contamination footprints resulting from these releases.  FAST3D-CT is a
general-purpose fully 3D computational fluid dynamics (CFD) model for contaminant transport in complex urban
geometries.  It is based on the high-resolution, time accurate Flux-Corrected Transport algorithms invented at NRL.  A
wide range of contaminant physics and physical environment models are employed in FAST3D-CT.  FAST3D-CT is
used to perform the time-accurate, high-resolution 3D CFD as an offline, high-fidelity urban contaminant transport
scenario generator.

The salient data and statistical features from the FAST3D-CT CFD calculations are summarized and distilled
into memory efficient, time-independent Dispersion NomographTM data sets.  These are interpreted and evaluated by CT-
Analyst.  There are no time-dependent integrations performed explicitly by CT-Analyst.  Instead, all predictions
produced by CT-Analyst are simply the result of applying an interpolation procedure utilizing the appropriate
nomograph data set based upon the high-resolution CFD results.  This same interpolation procedure can be used in both
upwind and downwind directions with equal effectiveness.  These simple geometric operations are used to determine the
probable source zone upwind of each sensor.  CT-Analyst provides the unique capability to immediately backtrack and
simultaneously determine the location of multiple unknown sources simply based on sensor readings and meteorological
parameters.

CT-Analyst has undergone several years of stringent testing and meets the necessary real-world and real-time
requirements for an urban airborne contaminant emergency assessment tool.  Validation studies of the components of
this new technology and field trials on “beta test” have been successfully conducted. The plume “predictions” from CT-
Analyst, based on a quantitative Figure of Merit, agree, within 80 to 90%, with the FAST3D-CT CFD simulations on
which they are based and yet are available much faster than the corresponding Gaussian plume estimates [3].
Furthermore, the underlying CFD technology is uniformly convergent so answers automatically get better with
increasing computer power because higher resolution CFD simulations can be used to build the Dispersion Nomograph
data sets [4]. In addition, the resulting capability includes necessary, crucial features not found elsewhere [5].

The existing plume prediction technology in use throughout the nation is based on Gaussian similarity solutions
(“puffs”), an extended Lagrangian approximation that only really applies for large regions and flat terrain where large-
scale vortex shedding from buildings, cliffs, or mountains is absent.  These models, used in a number of implementations
in the U.S. and throughout the world, fall prey to an important dilemma that the CT-Analyst approach avoids.  In these
Gaussian models, improving the quality of the answer requires considerably more computer time per run.  Reducing the
run time requires reducing the quality (accuracy) of the answer.

The use of CFD models or Gaussian plume models are not suitable for use as the fitness evaluation of a genetic
algorithm due to their relatively long times to generate plumes, and the sheer number (many millions) of fitness
evaluations and iterations required for a solution to converge.  Even if the time to generate a Gaussian plume decreased
significantly, the plumes generated would not take into account the 3D geometry of an urban region.  CT-Analyst's
plume capability is well-suited for this type of evaluation because it produces plumes comparable to the CFD calculation
as stated above while producing this result in about one millionth of the time [5].  The speed of CT-Analyst allows
fitness functions to be evaluated for performance quickly.  Table 1 shows the approximate amount of time required to
run a genetic algorithm for 1000 generations using various plume models.



Plume model Computer Approximate time to run a fitness evaluation for 1000
generations (population = 1000)

CFD(FAST3D-CT) Supercomputer ~9000 hours (random sources)

Gaussian Workstation ~500 hours (random sources)

CT-Analyst Laptop ~33 hours (random sources)

CT-Analyst Laptop ~4 hours (time dependent sensor coverage, 20 sensors)

Table 1.  The approximate time and the generic computer required using a genetic algorithm for this problem.

APPLICATION OF GENETIC ALGORITHMS FOR OPTIMAL SENSOR PLACEMENT

An elite simple genetic algorithm was used [1] where the members of the population with the highest fitness scores were
kept in the next population.  This ensures that the population’s maximum fitness score will not decrease and also reduces
the number of generations required to converge to an answer [1].  The rate of crossover was set at 0.95 with the rate of
mutation set at 0.25 percent, where the mutation increased if the rate of convergence decreased by a threshold.   In our
case the genome was the set of locations of the sensors in the sensor network with the chromosomes consisting of (x, y)
coordinates of the sensors.  The population size was set to 1000.  While the individual fitness function is now relatively
fast, the algorithm was distributed over multiple processors using MPI. The evaluations of the population are spread out
over multiple processors, with the best results of a generation saved as candidates for the solution.  The machine used for
this implementation is a cluster of dual-processor Opterons. This algorithm is compute bound so a high-speed
interconnect is not necessary.  Several different approaches were examined for the fitness function.

The first approach uses a plume model to generate plumes from randomly placed sources and then analyzes the
sensor network's ability to detect the plume within time t of release.  In this case, if a least one sensor is located within
the plume, it counts as a detection of the plume.  The sensor network evaluates individually a sequence of randomly
located sources, with the fitness score based on the total number of sources detected.  A new set of random sources must
be calculated for each generation.  If the set of source locations is fixed, the sensor network's solution would converge on
the coverage of that set of fixed sources, but not on a optimal coverage of sources located anywhere in the region.  This
method has the advantage of being able to use a variety of plume prediction tools like Gaussian plume models, CFD
models (e.g. FAST3D-CT), and Dispersion Nomograph tools (e.g. CT-Analyst).  However CT-Analyst is the best choice
due to its speed and accuracy (Table 1, lines 1-3).

 While this approach is acceptable, a much more efficient procedure was developed using CT-Analyst unique
upwind capability.  Figure 1a (next page) shows an example of the upwind danger zone for site.  The corresponding
upwind zone for a sensor represents the upwind area where the contaminant from a source could hit the sensor.  This
upwind, probable source zone or “backtrack” zone was modified to be time-dependent and can also be described as an
“anti-plume”.  Sensor coverage is the union of the “anti-plumes” for all of the sensors in the region.  Figure 1b illustrates
this updated display.  Using the union of anti-plumes as the fitness function decreases the time to evaluate a sensor
network for a region drastically (see Table 1, line 4).  The new fitness function is now the total area of sensor coverage
for a given region ranging from zero to one, which could be calculated with a single call to CT-Analyst.

Because of the increase in efficiency, the second approach was selected for the main optimization trials.  To
determine the optimal amount of sensors required for this region, sensor networks from five to forty sensors, in five
sensor number increments were evaluated for total sensor coverage on a 2 km by 2 km region for a typical city.  The
wind was from the northwest, with a speed of three meters per second.  The region itself is an urban area with varying
degrees of building density ranging from open areas free of structures to city blocks with high building density.  The
Dispersion Nomograph utilized for this region was generated using FAST3D-CT, which includes all of the effects of
buildings, streets, trees, etc.  A version of CT-Analyst was developed to execute without the GUI using a prototype of
the CT-Analyst Application Programmer’s Interface (API).  CT-Analyst is used to evaluate sensor configurations for a
detection delay of three minutes, six minutes, and nine minutes.  These times were selected based on results obtained
from the walk away program.  In reference [5] nine minutes warning delay is found to be maximum delay to be tolerated
if at least 50% of a population in an area affected by a moderately large plume is to be saved.



       

Figure 1. 1a. Upwind danger zone from site - infinite time.   1b. Upwind, time dependent “anti-plume” from sensor.

RESULTS

Figure 2 below shows the fractional area covered versus number of sensors for detection delay of three, six, and nine
minutes.  The number of sensors required producing adequate coverage increases significantly as the plumes size
decreases.  Only 10 to 15 sensors are required to obtain 90% coverage for a nine minute time delay, contrasted with over
40 for a three minute detection delay.  Even with 50 sensors, complete coverage of the region can not be obtained for the
three-minute delay while additional sensors became completely redundant past 30 sensors for these six- and nine-minute
warnings.
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Figure 2.  Fractional area of sensor coverage as a function of the number of sensors ( 2 km x 2 km coverage area).



Figures 3a and 3b represent the minimal sensor network required to detect at least 90% of the region for three-
and nine-minute detection delays.  For a nine-minute delay (Figure 3b), sensors are placed towards the edge of the
region, opposite of the wind direction because at nine minutes the “anti-plumes” are very large, and sensors are wasted if
they are placed further upwind.  If the time delay for detecting a plume is increased beyond nine minutes, the eventual
result is a sensor network with all of the sensors placed along the edge of the domain. 40 sensors are required to provide
the same coverage if a three-minute detection delay (figure 3a) must be provided.  The density of sensors for a given
area in the region varied. More sensors were required for relatively open areas and where the plume funneled through
gaps between buildings.  This was particularly noticeable when the time delay allowed for detecting plumes was short.

       
                    Figure 3a, and 3b. The solutions for a three-minute and nine-minute detection delay respectively.

The shape of the plume envelope can explain this result.  In areas with few buildings, the plume envelopes are
narrow and elongated, looking very much like their Gaussian plume counterparts. In areas with many buildings, the
shape of the plume envelope is broader, depending on the geometry of the buildings and wind angle.  Figures 4a and 4b
depict plume envelopes for the release of two sources in the region after three and after nine minutes.  The first source is
released in an open region while the second is in an area with high building density.  Note that the narrow plume's shape
starts to change (figure 4b) as it encounters a city block with high building density.  In order to detect a narrow plume
more sensors are required.

           

Figures 4a (three-minute plume), and Figure 4b (nine-minute plume)
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Figures 5.  Fractional coverage comparing genetic algorithm and random source approaches.

Figure 5 shows the coverage of the sensor network versus a random sensor placement run for the same number
of intervals.  The random (brute force) sensor placement is evaluated in the same manner as the genetic algorithm with
the best candidate produced of each generation reported as the maximum coverage attained.  For the same amount of
effort, here two million calls to CT-Analyst, the generic algorithm covered over 90% of the region while the random-
placement approach’s best answer results in coverage of about 72% of the region.

Conclusion

The use of a genetic algorithm to produce a plausible and useful sensor optimization has been shown. This approach was
not possible until CT-Analyst’s low-latency evaluation of contaminated regions was developed.  To calculate 1000
generations requires 1 million calls to CT-Analyst and many millions of individual sensor backtrack “anti-plume”
evaluations.  With more complex fitness functions, and more stringent requirements for a sensor network, the time to
calculate an optimal network will only increase.  Use of other plume models is prohibitive.  This approach is one
technique for determining the optimal sensor placement.  It has also shown that to provide guaranteed short detection
delays will require many sensors.  This calculation assumes that of the sensors are always accurate.  To make a robust
network that can handle false alarms and errant reports will also increase the total amount of sensors required.

Future Work

While this method easily finds a functional sensor network for one wind angle, it needs to be extended for multiple wind
angles.  Using regional information on seasonal average wind direction, and speed can be used to weight the importance
of wind in the placement of sensors.  Sensor placement also needs to be verified to see how differing criteria can change
the optimal location of the sensors.  For instance, if CT-Analyst's ability to backtrack a source is used in the fitness
function, with the accuracy of backtrack weighted heavily for a sensor network's score, how different is the result



compared to the sensor network’s coverage based solely on the wind angle and speed?  These two results will be
presented at the conference.  Other variables could also be added to the genome.  As well as the sensor location, the type
of sensor deployed could be added to the genome of the members in a population.  This should also allow including
considerations of redundancy for treatment of false alarm possibilities.

The variant of the genetic algorithm used here has a simple implementation.  Other mechanisms used with
genetic algorithms need to be evaluated to determine how they affect the convergence of a solution as well as the final
solution’s performance.  This includes changes in how the algorithm is parallelized, the selection of mates for crossover,
and varying techniques of modifying when crossover and mutation occur.

This new method also treats the nomographs and the individual sensor placement information as externally
given functions.  The results obtained from this approach will have to be examined to determine how the properties of
the Dispersion Nomographs themselves, as well as other information in a region, can affect rules of thumb for the
placement of sensors.  The results from the various runs of this genetic algorithm will need to be analyzed further from
this perspective.  Even if other direct algorithms do not provide results that outperform the genetic algorithm, they could
still be used to seed the initial population for the genetic algorithm.  This could further speed up the convergence.
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